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ABSTRACT

We present Darwin, an enabling technology for mobile phone
sensing that combines collaborative sensing and classifica-
tion techniques to reason about human behavior and con-
text on mobile phones. Darwin advances mobile phone sens-
ing through the deployment of efficient but sophisticated
machine learning techniques specifically designed to run di-
rectly on sensor-enabled mobile phones (i.e., smartphones).
Darwin tackles three key sensing and inference challenges
that are barriers to mass-scale adoption of mobile phone
sensing applications: (i) the human-burden of training clas-
sifiers, (ii) the ability to perform reliably in different envi-
ronments (e.g., indoor, outdoor) and (iii) the ability to scale
to a large number of phones without jeopardizing the “phone
experience” (e.g., usability and battery lifetime). Darwin is
a collaborative reasoning framework built on three concepts:
classifier/model evolution, model pooling, and collaborative
inference. To the best of our knowledge Darwin is the first
system that applies distributed machine learning techniques
and collaborative inference concepts to mobile phones. We
implement the Darwin system on the Nokia N97 and Ap-
ple iPhone. While Darwin represents a general framework
applicable to a wide variety of emerging mobile sensing ap-
plications, we implement a speaker recognition application
and an augmented reality application to evaluate the ben-
efits of Darwin. We show experimental results from eight
individuals carrying Nokia N97s and demonstrate that Dar-
win improves the reliability and scalability of the proof-of-
concept speaker recognition application without additional
burden to users.

Categories and Subject Descriptors: C.3 [Special-Purpose

and Application-Based Systems] Real-time and embedded
systems

General Terms: Algorithms, Design, Experimentation,
Human Factors, Measurement, Performance
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1. INTRODUCTION

The continuing need to communicate has always pushed
people to invent better and more efficient ways to convey
messages, propagate ideas, and share personal information
with friends and family. Social-networking, for example, is
the fastest growing phenomenon of the Internet era where
people communicate and share content with friends, family,
and acquaintances. Recently, researchers started investigat-
ing new ways to augment existing channels of communica-
tion and improve information exchange between individu-
als using the computational and sensing resources offered
by sensor-enabled mobile phones (aka smartphones). These
phones already utilize sensor data to filter relevant infor-
mation (e.g., location-based services) or provide better user
experiences (e.g., using accelerometer data to drive mobile
phone sensing applications). However, information about
user’s behavior (e.g., having a conversation) and personal
context (e.g., hanging out with friends) is often provided
manually by the user. This naturally leads to the following
thoughts: what if the available sensors are further exploited
to automatically infer various aspects of a person’s life in
ways that have not been done before? What if the character-
ization of the person’s microcosmos could be seen as a new
form of communication? We believe that as sensor-enabled
mobile phones become commonplace, they can be used at
a personal-scale to enrich and support communication and
collaboration, to measure and improve task performance,
and to aide in the assessment of health and wellness.

There is a growing research effort in using mobile phones
to infer information about people’s behavior and their envi-
ronment [46, 21, 20, 30, 29, 10, 27]. These systems typically
rely on pre-trained models or classifiers, where the training
data from events of interest are acquired in advance. It is of-
ten exceedingly hard to obtain a representative training set
from which to build reliable classifiers (e.g., samples of an
individual’s voice in all possible environments). As a result
classifiers tend to perform poorly. Furthermore, current ap-
proaches do not take advantage of increased sensing density
offered, for example, by the cloud of mobile phones around
us. This cloud represents an ensemble of in situ resources
that can cooperate to boost sensing performance, make sens-
ing more robust, and more effectively and scalably achieve
a common sensing task.

With the rising interest in mobile phone sensing applica-
tions we believe there is a need to provide mechanisms that
maximize the robustness, accuracy, and scalability of these
applications. In this paper, we present Darwin, a novel col-
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Figure 1: Darwin steps: (a) evolution, (b) pool-
ing and (c) collaborative inference. They represent
Darwin’s novel evolve-pool-collaborate model imple-
mented on mobile phones.

laborative reasoning system that is self-extending and uti-
lizes co-located mobile devices to achieve better accuracy
and scalability, at lower cost to the user. As shown in Fig-
ure 1, Darwin combines three different computational steps
to achieve its goal:

Classifier evolution is an automated approach to up-
dating models over time such that the classifiers are robust
to the variability in sensing conditions common to mobile
phones (e.g., phone in the pocket, in pocket bag, out of the
pocket), and settings (e.g., noisy and loud environments).
A fully supervised learning method, where labeled examples
from different context are provided to the system, would not
be practical in this case since the phone owner would con-
tinually have to provide labels any time an event is detected
that is determined to be in a different setting and context.
This simply does not scale and would be unacceptable to
users. While self-evolving classification models techniques
have been investigated in the past [54], we show the actual
deployment of such techniques on a real phone based system.

Model pooling is a novel technique which is designed
to answer the following question: can we reuse models that
have already been built and possibly evolved on other phones?
This would increase the system scalability because there
would be no need to retrain classifiers for events which al-
ready have classifiers trained to recognize them. With pool-
ing, mobile phones exchange classification models whenever
the model is available from another phone, thus, allowing
mobile phones to quickly expand their classification capa-
bilities; that is, if a given mobile phone does not have a
model for a person or an event, there is no need for it to cre-
ate a new classifier as it can readily obtain and use another
phone’s model. Note, that models can be exchanged in-situ
between co-located phones or from servers over the network.
In either case the basic pooling process remains the same.

Collaborative inference combines the classification re-
sults from multiple phones to achieve better, more robust
inference with higher confidence in the sensing result. After
pooling, co-located mobile phones all have the same clas-
sifiers. At this point they can run the same inference algo-
rithms in parallel and a final inference result can be obtained
by combining the output from the different phones. This al-
lows the system to be more robust to degradation in sensing
quality experienced by some of the phones (e.g., a person
carrying the phone in the pocket) and take advantage of im-

proved sensing quality offered by others (e.g., the phone is
out of the pocket near the event to be sensed).

We show the performance of Darwin by exploiting the au-
dio modality of mobile phones, in particular, we show the
benefit of applying Darwin to a speaker recognition applica-
tion using audio sampled by the onboard microphone. We
show the performance of the speaker recognition algorithm
on the Nokia N97 [6] and Apple iPhone [1] in different set-
tings and context when Darwin and the speaker recognition
application are used by eight people.

The reason we select speaker recognition is not because we
intend to design a new speaker recognition algorithm (there
is a considerable amount of literature on this topic [44, 43,
26, 18, 51]), but to show how Darwin improves a mobile
sensing application inference quality.

Darwin is founded on an opportunistic sensing paradigm
[12], where the user is not an active participant in the sens-
ing activity (i.e., actively taking a sensor reading). In this
case, sensing happens automatically and continuously when
the system determines that the sensing context is right for
sensing. Darwin can be thought of as a sensing system run-
ning in the “background mode” of the mobile phone without
any user intervention in actual sensing. The key contribu-
tion of our work is to show how Darwin can boost the in-
ference accuracy of mobile sensing systems by applying dis-
tributed computing and collaborative inference concepts to
these systems when devices come together opportunistically.
We conjecture that Darwin applied to other mobile phone
sensing applications and systems that use the microphone as
an audio sensor [27, 10] would also see similar performance
improvements because audio sensed data is sensitive to the
characteristics of the environment (e.g., noise, other people
speaking, etc.) and sensor context of the phone (e.g., in
or out of pocket for example). In the paper, we also show
how Darwin could be integrated in a mobile social network-
ing application, a place discovery application, and a friend
tagging application.

Today, mobile phone sensing applications mostly exploit
the GPS, accelerometer, digital compass, and microphone
sensors for personal sensing. In the future, mobile phone
sensing will be societal-scale supporting a broad set of social,
health and environmental applications, such as, tracking pol-
lution, population well-being, or the spread of disease. It is
also likely that more sophisticated sensors will be embedded
in phones, such as, pollution and air quality sensors [20] and
galvanic skin response (GSR) sensors. The sensing and infer-
ence quality of these applications is affected by many factors.
Importantly, phone sensing context, i.e., the position of the
phone on a person’s body in relation to the sensed event, is
challenging for these emerging applications. A phone in the
pocket or bag might perform poorly when sensing air qual-
ity or audio events. Classification models are also limited by
the quality of the trained data and their inability to capture
different characteristics from the data in different environ-
ments. Darwin’s novel evolve-pool-collaborate model is
designed to provide a foundation for a broad family of ex-
isting and emerging sensors and applications, as shown in
Figure 2. To the best of our knowledge, Darwin represents
the first system implemented on a number of mobile phones
that can evolve, pool, and enable cooperation providing ro-
bust, efficient, and scalable sensing.

The structure of the paper is as follows. Section 2 presents
the detailed design of the Darwin system, followed in Sec-
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Figure 2: Examples of application domains Darwin
can be applied to: social context (e.g., in conversa-
tion, in a meeting) and ambient audio fingerprinting
using the microphone; pollution monitoring leverag-
ing the phone’s pollution sensor; radio fingerprint-
ing for localization with GPS, WiFi and cellular tri-
angulation; and applications exploiting the phone’s
camera.

tion 3, by a discussion of privacy and trust issues. Section 4
presents the system implementation and performance evalu-
ation of Darwin applied to a proof-of-concept speaker recog-
nition application. Following this, we discuss a number of
other sensing applications built on Darwin and then discuss
the related work in Section 5 and Section 6, respectively.
Section 7 concludes with some final remarks.

2. DARWIN DESIGN

In this section, we present the detailed design of the Dar-
win system including the use case speaker recognition appli-
cation.

2.1 Design Considerations

The design of Darwin is governed by the limited com-
putational resources on the phone to run computationally
intensive machine learning algorithms and mobility issues.
In what follows, we discuss these motivating factors and the
design decisions that address them.

The main goal of mobile phones is expanding way beyond
just making phone calls. Compared to early mobile phones,
modern smartphones are also powerful programmable plat-
forms with up to 600MHz processors and 1GB of application
memory [34]. While smartphones have increasing resources
running continuous sensing applications they present a num-
ber of important challenges. These range from the design
of efficient duty cycling algorithms that can maintain ac-
ceptable fidelity and time between charges to the need to
push more intelligence to the phone in terms of classifica-
tion algorithms without impacting the user experience (e.g.,
freezing the phone, slowing the UI, blocking calls). Machine
learning algorithms that run on the phone to process sen-
sor data should be implemented in an efficient lightweight
manner. Darwin is designed to reduce on-the-phone com-
putation based on a split-level computation design [29], of-
floading some of the work to backend servers (as discussed
in Section 2) while trading off the cost for local computation
and wireless communication with backend servers.

Users carrying mobile phones also presents a number of
challenges for continuous sensing applications that have to
operate under real-world mobility conditions. The context
of the phone is challenging to sensing. Users carry phones
in many different ways. Therefore, when a phone senses an
event, its context (e.g., in/out of the pocket, in/out the bag,
etc.) will impact the sensing and inference capability of the

phone. Another challenge that mobility creates is that the
same phone may sense the same type of event under different
conditions (e.g., the same person speaking in a quiet office or
noisy restaurant). This leads to poor inference. A group of
co-located phones running the same classification algorithm
and sensing the same event in time and space could compute
different inference results because of the context problem
and slight environmental differences, as discussed above. In
essence, each phone has a different viewpoint of the same
event. These real-world issues arise because sensing takes
place out in the wild — not in a controlled laboratory setting
— and is governed by the uncontrolled mobility of users.

Darwin exploits mobility and addresses these challenges.
It uses classifier evolution to make sure the classifier of an
event on a phone is robust across different environments —
works indoors and outdoors for example. Extracting fea-
tures from sensed events in order to train a classifier is
costly for a mobile phone in terms of computation and time.
Darwin allow phones to pool classification models when co-
located or from backend servers. Pooling radically reduces
the classification latency because a phone can immediately
start to make inferences without the need to train classi-
fiers. Different phones running the same classifier and sens-
ing the same event are likely sensing the event differently,
as discussed above. Darwin uses collaborative inference to
compensate for this difference, boosting the final inference
result. Darwin exploits mobility because it is designed to be
opportunistic in its use of classifier evolution, pooling, and
collaborative inference.

2.2 Darwin Operations

In what follows, we present a high level description of how
Darwin operates: (1) each mobile phone builds a model" of
the event to be sensed through a seeding phase. Over time,
the original model is used to recruit new data and evolve
the original model (see Figure 1(a)). The intuition behind
this step is that, by incrementally recruiting new samples,
the model will gather data in different environments and
be more robust to environmental variations. The phone
computes the feature vector? locally on the phone itself and
sends the features to a backend server for training. This is
because the feature vector computation is quicker and more
energy efficient than the training phase of a machine learning
algorithm such as a Gaussian Mixture Model (GMM), which
is the technique we use (it takes approximately 2 hours to
train a GMM with 15 seconds of audio from experiments
on the Apple iPhone and N97). (2) When multiple mo-
bile phones are co-located they exchange their models so
that each phone has its own model as well as the co-located
phones’ models. Model pooling, as shown in Figure 1(b),
allows phones to share their knowledge to perform a larger
classification task (i.e., in the case of speaker recognition,
going from recognizing the owner of the phone to recogniz-
ing all the people around in conversation). After models are

'A classification model is represented by a mathematical
expression with parameters. For example, in the case of a
Gaussian classification model, the model is identified by a
Gaussian function with mean and standard deviation as the
parameters. Refer to Section 2.5 for further details.

2 A feature vector is a vector of numerical elements represent-
ing an event. For example, in the case of activity recognition
applications that use the accelerometer, two feature vector
elements often used are the mean and standard deviation of
the accelerometer readings.



pooled from neighboring mobile phones, each phone runs the
classification algorithm independently. However, each phone
might have a different view of the same event — i.e., differ-
ent phone sensing context. For example, one of the phones
might be inside the user’s pocket whereas another one might
be outside, or one of the phones could be closer to the sens-
ing event than others. (3) Collaborative inference exploits
this diversity of different phone sensing context viewpoints
to increase the overall fidelity of classification accuracy, as
illustrated in Figure 1(c).

2.3 Speaker Recognition Use Case

We choose speaker recognition as our proof-of-concept ap-
plication because the audio modality is generally sensitive to
environment and phone sensing context and we believe the
findings from this application will generalize to other classi-
fication problems such as in [27, 10] or pollution for example
[20] for which the phone sensing context is important. The
speaker recognition application attempts to determine the
identity of a speaker by analyzing the audio stream coming
from a microphone. The recognition process includes the
following steps:

Silence Suppression and Voicing. The system first
eliminates audio chunks that contain silence or low ampli-
tude audio and then runs a voicing routine to remove the
chunks that do not contain human voice. By focusing only
on chunks that are likely to contain human speech we reduce
the false-alarm rate of the classification system. The silence
suppression filter works on 32 ms of audio at a time and dis-
cards portion of the audio whose root mean square (RMS)
value falls below a threshold 7. The threshold 7 is deter-
mined experimentally under various conditions, for example,
recording voice using the mobile phone in quiet indoor envi-
ronments, on a sidewalk of a busy road, and in a restaurant.
The voicing is performed by training a GMM using several
hours of non-voice audio captured in various conditions (e.g.,
quiet environments, noisy from car traffic, etc.) and discard-
ing the audio chunks whose likelihood falls with a +/- 5%
from the non-voice likelihood. This threshold is also deter-
mined experimentally and found to be accurate for many
different scenarios. More advanced techniques could be con-
sidered in future work such as the voicing scheme proposed
in [11].

Feature Vector. The feature vector consists of Mel Fre-
quency Cepstral Coefficients (MFCCs) which are proven to
be effective in speech audio processing [17][16][42]. We use
coefficients 2 to 20 and skip the first coefficient because it
models the DC component of the audio.

Speaker Model Computation. Each speaker is mod-
eled with a mixture of 20 gaussians (hence, a 20-component
GMM). The reason we use GMM is because GMM algo-
rithms are widely used in the speaker recognition literature
[40][39]. An initial speaker model is built by collecting a
short training sample — 15 seconds in our current implemen-
tation. When a user installs the application on their phone
they are asked to provide a sample of voice by reading loud
text displayed on the phone screen. In Darwin, the initial
model evolves to capture the characteristics of the different
environments where the person happens to be located.

Each speaker i’s model M; corresponds to a GMM;, V ¢, ¢
= 1..N (where N is the number of speakers), and GMM; is
the model trained and evolved by P; for speaker 3. A GMM;

3We associate one speaker to a single phone. Whenever the
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Figure 3: (a) Training and (b) Evolution steps.

is characterized by the tuple M; = <p;,3;,w;>, where p;
is the P x Q multi-dimensional array containing the mean
values of the gaussian distribution, P is the number of com-
ponents and Q is the number of dimensions of the GMM
model. ¥; is the @ x @ x P multi-dimensional covariance
matrix, whereas w; is the 1 x P array of weights for each
gaussian component. For a detailed discussion of a GMM
for speaker identification see [40]. The Darwin implemen-
tation uses @ = 19 (i.e., the number of MFCCs coefficient
employed) and P = 20. We fix the number of components
to 20 because the larger the number of components, where a
component represents a single gaussian within the mixture,
the more accurate the model is. At the same time as the
number of components increases, the computing cost for the
model increases. For our implementation, we experimentally
verify that 20 components provide the best tradeoff between
computation cost and classification accuracy.

Speaker Inference. In Darwin, speaker inference op-
erates in a collaborative and distributed manner. The in-
ference is collaborative because all the mobile phones con-
tribute to the final results by communicating the confidence
level associated with certain audio with other mobile phones
in the neighborhood using the short-range radio, such as,
Bluetooth or WiFi. The inference is distributed in the sense
that the final inference result is derived locally on each in-
dividual mobile phone without relying on any particular ex-
ternal entity. We show how collaborative inference boosts
the performance of the speaker recognition application.

2.4 Classifier Evolution

2.4.1 Initial Training

The initial training phase is intended to be short so that
the application can be used immediately by people without
requiring a prolonged initialization phase. Clearly, a short
training data set implies a less accurate classification model.
For this reason off-the-shelf speaker recognition applications
[47][18][23] use large number of samples typically several tens
of seconds of speakers’ voices in order to achieve accept-
able recognition accuracy. In our system, the initial speaker
model is just the starting point and the model is used to
recruit new training data and evolve the model on-the-go
without additional user intervention. For applications other
than speaker recognition, the initial model of the event to
be sensed is provided by the system during the deployment
phase. The evolution algorithm is designed to be applied to
different sensing modalities other than audio, i.e., air qual-
ity sensing, etc. The initial training phase consists of taking
a sample or seed of the sensed data and using half of the
data to build the model. The remaining half for building a
baseline likelihood (BL) as shown in Figure 3(a).

speaker is using n phones we would have n different GMM
models, one per phone for the same speaker.



During the initial training phase, a person is asked to talk
into her phone until a voicing audio stream of 30 seconds is
collected by the mobile phone. The first 15 seconds of the
training set are used for training purposes and the remain-
ing 15 seconds to set a baseline for the classifier evolution
technique, as discussed in Section 4. The raw audio stream
received from the microphone is first passed through the si-
lence suppression and voicing filter; then, the training and
baseline audio are both fed into the MFCCs extractor. The
MFCCs!"*" computed from the training audio form the fea-
ture vector that is used to build a GMM of the speaker. The
baseline audio is used to extract MFCCs***¢ and to deter-
mine the BL that is used to recruit new audio samples, as
discussed in Section 2.4.2. The baseline is computed only
for the model that the phone trains, which, in the case of
speaker recognition, is the model of the phone owner voice.

2.4.2 Evolution

An important challenge in training classifiers is to obtain
sufficient amount of labeled data for supervised training.
Data labeling is tedious and expensive and real-time label-
ing is seldom practical since people are averse to being in-
terrupted in order to label data. In essence, labeling data
does not scale.

Therefore, machine learning algorithms running on mobile
phones can not fully rely on supervised learning strategies.
In contrast, a fully unsupervised learning process without
any human intervention can often latch onto idiosyncrasies
of the data and is not guaranteed to model the classes the
user might care about. Darwin takes a different approach
by using a classifier evolution algorithm on mobile phones
which uses a simple semi-supervised learning strategy [54].
We show that such an approach can be effective in boosting
the performance of the speaker recognition system. Dar-
win’s classifier evolution revolves around the fact that mo-
bile phones create different classification models for differ-
ent environments if existing classification models do not fit
those environments. When the speaker recognition appli-
cation bootstraps, the speaker’s voice is sampled in a quiet
environment to build the initial model for the owner of the
phone (15 seconds of voicing audio). During runtime, if the
likelihood of the incoming audio stream is much lower than
any of the baseline likelihoods corresponding to the differ-
ent models on the phone, then a new classification model
is evolved. The classifier evolution algorithm comprises the
following steps: (i) obtain the likelihood for a 96 ms in-
coming audio chunk; (ii) compare the maximum likelihood
estimator (MLE) result with BL for models already existing
on the phone; (iii) recruit the new audio as part of the train-
ing data, if necessary; (iv) re-train the classification model;
and finally (v) compute the new BL, which is the likelihood
of the original baseline plus the newly recruited data. The
classifier evolution algorithm is detailed in Algorithm 1.

Comparison with BL. If L is the number of classifica-
tion models for different environments, the Likelihoodyew is
compared with BL;, V i, i=1..L. At the beginning, the phone
contains only BL1, which is derived from the initial training
data set. If Likelihoodpe. falls between a +/- 3% interval
around one of the BL;, then that BL; is used as the refer-
ence BL for the environment where the speaker is situated.
We determine the 3% threshold experimentally in different
settings and this value is the one that best generalizes to
different environments and with the best performance. Be-

Algorithm 1 Pseudo-code of classifier evolution al-
gorithm running on node i.

NumEnvType < number of environments for which a
model is defined.

while there is a new incoming audio chunk do

Compute Likelihoodnew

Compare Likelihoodye,, with BL;, V i, i=1..L

if 35 € {1. NumEnvType} s.t. Likelihoodyew is within
+/-3% BL; then

{The phone has a baseline for the environment}
BLcomp < BL;
environmentType < j

else

{The phone does not have a baseline for the environ-
ment}
BLcomp <+ BL1
environmentType «— 1
end if
LikelihoodDifference « | Likelihoodnew - BLcomp |
Add LikelihoodDifference to vecDiff
meanDiff «+ mean(vecDiff)
stdDevDiff « stddev(vecDiff)

if ((stdDevDiff < (previousStdDev — 5%) OR
(stdDevDiff > (previousStdDev + 5%))) AND
(Likelihoodpew > BLcomp - mean(vecDiff)) then

Recruit new training data for environmentType
Calculate new model for environmentType

Add data to baseline audio of environmentType
model

Calculate new BL;
end if

end while

cause the threshold is derived for a set of environments where
people spend most of their time (e.g, quiet indoors, outdoor
along a sidewalk of a busy street, and in a noisy restaurant)
we are confident that the threshold would extend to other
similar environments.

After having determined which model to use, the absolute
value of the difference between Likelithood,e. and BL; is
recorded. The vector vecDiff holds these differences for
each new audio chunk. The mean and standard deviation of
the elements in vecDiff are then calculated.

Data Recruiting and Model Re-Training. New data
is recruited for re-training if the following two conditions
hold: 7) the standard deviation of the elements in vecD-
iff, when the new difference is added, oscillates outside a
+/-5% boundary around the standard deviation calculated
before the new difference is added to vecDiff; and i) the
Likelihoodnew is greater or equal than (BL; - mean{vecDIiff }).
The first condition ensures we are recruiting only voice data
that differs from the current model and the second normal-
izes the likelihood with respect to the mean. As new data
is added to the training set, the inference model ¢ is re-
computed and a new BL; is calculated by adding the audio
chunk to the baseline audio of model i. The recruiting stops



when the likelihood stabilizes inside the +/- 5% boundary
because convergence is reached.

As a product of the classifier evolution algorithm, different
classification models are automatically created for different
environments and locally stored on the phone. We prove
the effectiveness of our algorithm by running the speaker
recognition application and Darwin system in three differ-
ent environments, that reflect common places people find
themselves. In our experiments, three models are automat-
ically created. In our speaker recognition application each
model uses 63KB of storage space and approximately 500KB
of storage for the training data for each model, which in-
cludes the initial training set plus the fraction of data re-
cruited as the model evolves. The overall storage require-
ment for a single speaker with three different environments
is ~1.8MB. This amount of storage is reasonable for mod-
ern mobile phones because they have several gigabytes of
persistent memory and up to 1GB or more of application
memory. Under more limited memory constraints the num-
ber of classification models for the same speaker and for the
other speakers could be set to a maximum and the mod-
els arranged according to a circular buffer policy. As the
number of models in the buffer exceeds the buffer capacity,
the oldest models could be removed to accommodate new
models.

2.5 Model Pooling

Model pooling is based on the simple premise of sharing
classification models that have already been built and opti-
mized by other mobile phones. It is a simple but effective
way to increase classification timeliness by minimizing the
inference latency. Model pooling boosts classification scala-
bility, accuracy, and speed by providing a mechanism for fast
exploitation of existing models by mobile phones rather than
building classifiers from scratch themselves. Model pooling
boosts classifiers scalability because models are not required
to be trained for multiple events, but just for those events the
mobile phone is most likely to be exposed to. For example, in
the speaker recognition case the percentage of time that the
phone owner’s voice is captured, because of conversations
with nearby people or phone calls, is greater than the per-
centage of time any other speaker is captured. In this case, it
would be possible to accurately re-train and refine over time,
using the evolution algorithm, only the phone owner’s voice
model rather than everybody else’s voice model. Mobile
phones can pool models — voice models in the case of speaker
recognition — from other co-located phones for events that
they do not have. These models are readily available, usable,
and require no extra training steps. Model pooling does not
necessarily occur between co-located phones. Models can be
pooled from backend servers too. Assume a particular phone
builds a sophisticated audio inference or pollution model of
an area [22, 10, 20]. Phones can geo-tag models and upload
them to backend servers. From this point on other phones
moving into these geo-tagged areas do not have to wait to
generate their own models. They simply download models
from a server if available and start making inferences.

In order to formalize model pooling, let P be a mobile
phone, M, be the model derived and optimized for a certain
event by P, and M; be the classification models individually
derived and optimized by N other mobile phones P; where
i=1.. N. If K of these mobile phones are co-located with
P, following the pooling phase P would have its own model
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M, and models M;, where i € {1 .. K}. Each model M;
is stored locally by P in order to be used again without the
need to pool them by phone P;, unless the model has been
evolved by P;. In that case, node P; would announce to its
neighbors that a new model has been computed and is ready
to be pooled. As a result of the model pooling algorithm,
all phones receive the classification models of all the other
phones at the end of the model pooling phase.

After node P has pooled a classification model M; =
<pi,2;,w;> from node P;, node P will replace P;’s clas-
sification model M; only if P; announces a new classifica-
tion model M;**”. Node P; determines that it is time to
announce the new classification model M;*** when the evo-
lution of the model is complete.

2.6 Collaborative Inference

Collaborative inference is designed to boost the classifi-
cation performance by taking into account the classification
results of multiple phones “observing” the same event instead
of relying on only individual classification results. The idea
behind collaborative inference is as follows: given that an
event could be sensed by multiple, distributed but co-located
mobile phones, Darwin leverages the classification results of
individual phones to achieve better accuracy. The hypoth-
esis is that we can take advantage of the multiple sensing
resources around an event and exploit their spatial distribu-
tion and context diversity. In the case of speaker recognition,
when a person is talking with a group of people, the phones
of the other people would pick up the speaker’s voice with
different characteristics. Some phones could be in pockets,
others on a clip belt or closer to a source of event than the
other phones. In this case, if the application relies only on
each individual phone’s classification, the speaker classifica-
tion accuracy would be poor when the phone sensing context
is not good (e.g., in pocket or near a noise source) in relation
to the specific event. The same reasoning holds for pollution
measurements using mobile phones.

Following the pooling phase, each phone P; contains the
other phones classification models M;, where i € {1 .. K},
and K is the number of neighbors. Each phone P; runs
the inference algorithm in parallel using the common set of
models. The fact that the event is classified by multiple
phones using common classification models and that these
phones may be exposed to different contexts (some of which
are better than others) can lead to higher accuracy when
the results are combined. The collaborative inference phase
breaks down into three distinct steps: ¢) local inference oper-
ated by each individual phone; ii) propagation of the result
of the local inference to the neighboring phones; and i) fi-
nal inference based on the neighboring mobile phones local
inference results.

2.6.1 Local Inference

During the local inference phase each node individually
operates inference on the sensed event using its own infer-
ence model of the event and the inference models pooled
from other phones. The goal is to locally derive the con-
fidence level of the inferred event in order to be able to
communicate this confidence level to neighboring phones.
By having the confidence level of each phone sampling the
event, all the phones are able to run the collaborative in-
ference step to compute the final inference result. In or-
der to operate collaborative inference, the phones must be



time-synchronized because they need to perform inference
on the same event at the same time. We rely on the fact
that mobile phones support time synchronization through
the cellular infrastructure. We measure a time synchroniza-
tion error between four iPhones synchronized through the
cellular network of 500 ms. If the error is larger than 500 ms
we use a loose synchronization approach. One of the phones
(randomly picked) sends a broadcast message which, when
received by all the neighbors at the same time, triggers the
sampling phase. After having received this broadcast mes-
sage phones are synchronized.

Following the audio signal sampling and filtering, the stream

is divided in 96 ms long chunks*. MFCCs are extracted from
each chunk. At this point, a maximum likelihood estimation
algorithm is run in order to verify which of the models best
fits the audio chunk. To avoid having the maximum likeli-
hood estimator running through too many pooled models,
which could potentially be costly in terms of computation
for a mobile phone, the estimator only uses the models of
the phones detected in the neighborhood. Neighbor detec-
tion is performed using short-range radio technology, such
as, Bluetooth and WiFi.

In order to increase the classification accuracy we feed
the maximum likelihood estimation result into the window-
ing block. After the windowing step the local classification
result is derived. If the maximum likelihood estimator re-
turns that the i—th audio chunk belongs to event E, the
event F is deemed to be true if and only if the following two
conditions hold: (i) event F, i.e., a certain speaker speaking,
is detected at least once in a window comprising the previ-
ous two audio chunks; and (ii) the classification accuracy
confidence is at least 50% larger than the confidence for any
other events. The reason for the first condition is to guaran-
tee that a voice sample is included — since audio chunks are
96 ms long, if a speaker is detected at least twice in a window
of time of duration 96 ms x 3, then we have better confi-
dence that we are really capturing that speaker. A larger
window size would increase the classification latency and af-
ter experimentation we determine that a window size of 3
best suits our system, which requires near-real time classifi-
cation results. The reason for the second condition, having
determined the 50% threshold experimentally, is to dampen
the impact of false positives. The pseudo-code of the local
inference algorithms is shown in Algorithm 2. The locally in-
ferred speaker ID is associated with the classification model
that best fits the audio chunk following the windowing pol-
icy. Because a phone computes the inference confidence for
each of the K models as reported in Algorithm 2, the result
of the local inference takes the form of the following vec-
tor LI , = {confidenceSpeakery, confidenceSpeakers, ..
, confidenceSpeakery}, where the subscript notation 1..s
indicates that the vector contains the inference results for
speakers 1 to s and the superscript index j indicates that the
vector is generated by node j. Consider for example, that
three nodes (N1, Ng, and N3) are co-located and running
the speaker recognition application. If Si, S2, and Sz are
the speakers associated with nodes N1, N2, and N3 respec-
tively, and assuming S; is actually speaking, then an output
for the LI vectors could, for example, be: LI%,273 = {0.65,

4We use 96 ms for each audio chunks to make it a multiple
of the MFCC binning size of 32 ms. This multiple makes
the duration of the audio chunk small enough to maximize
the likelihood of capturing just one speaker at a time.
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0.15, 0.2}, LI 5 5 = {0.4, 0.5, 0.1}, and LI} , 3 = {0.7, 0.2,
0.1}. The reason of Ny expressing lower confidence about
speaker 1 could be caused by the fact that mobile phone Ny
may not have a good sensing context.

Algorithm 2 Pseudo-code of the local inference al-
gorithm running on node ¢ using K pooled models.
The number K is determined by the number of de-
tected neighbors. The locally inferred speaker ID
corresponds to the index of the model best fitted by
the audio chunk following the windowing policy.

while there is a new incoming audio chunk do
{Go through all the classification models:}

for j = 1to K do
arrayLE[j] < likelihood estimation for audio chunk
end for

Retrieve the max likelihood from arrayLLE and the as-
sociated index indexMA.

Retrieve the second larger confidence from arrayLE and
the associated indexSMA.

{Windowing policy:}

if (arrayLE[indexMA] — arrayLE[indexSMA] >

0.5) AND ((indexMA == previousMAX) OR

(indexM A == previousPreviousM AX)) then
locallyInferredSpeaker «— indexMA
previousPreviousMAX « previousMAX

previousMAX « indexMA
end if

end while

2.6.2 Local Inference Propagation

Following the local inference step, each mobile phone i
broadcasts the result of its local inference (i.e., the vector
LIi) in order to give neighboring phones the ability to move
to the final step, i.e., the final inference. A time stamp is
associated with vectors LI* in order to align local inference
results in time. A weight is also associated with vectors LI'.
The weight is an indication of the quality of the local infer-
ence. For example, assuming the mobile phone determines
its context (e.g., in or out of the pocket) and is running an
audio or pollution sensing application [20], then the value
of the weight is small or large when the phone is in or out
of the pocket, respectively. Therefore, a LI* vector with a
small weight indicates that the mobile phone ¢ is not in a
suitable sensing context and has less influence on the final
inference phase.

The phones broadcast their local inference results at the
rate the local inference is computed. The local inference is
computed right after an audio sample is collected. Conse-
quently, if the phone polls the microphone every A number of
seconds, the local inference is computed and broadcasted ev-
ery A seconds as well. For example, a local inference broad-
cast rate of 1Hz implies receiving the local inference results,
hence, computing the final inference, every second. Clearly,
the higher the broadcast rate the faster the final inference
(see Section 2.6.3). We do not propose any specific local
inference broadcast rate, since this depends on the applica-
tion requirements. Rather, we show the cost of transmitting



a single confidence level from which the total cost for each
specific transmission rate is derived (see Section 4.4).

2.6.3  Final Inference

The goal of the final inference phase, which follows the lo-
cal inference propagation, is to compensate event misclassifi-
cation errors of each individual mobile phone achieving bet-
ter classification confidence and accuracy of sensed events.
Mobility and context affect the local inference result, some-
times such that an event could be misclassified. For the
final inference, Darwin combines the local inference results
derived by individual mobile phones that are spatially dis-
tributed in the area of the target event. The technique used
to perform the final inference is to find the inferred speaker
(IF) that maximizes the joint probability as in Equation 1.

IF = argmax { Prob(s; ), Prob(s; ), .., Prob(s)" )}
J,je{1..5}

(1)

where K is the number of co-located phones that have
been contributing with their local inference, S is the num-
ber of speakers, and Prob(sé-) is the probability that speaker
j is detected by phone i. This operation is facilitated by the
fact that the property of independence between the differ-
ent LI g vectors, Vj, j = 1..K, is verified since each node
(i.e., phone) N;, ¢ = 1..K, performs independent event sens-
ing. Given the property of independence, we can re-write
Equation 1 as:

K

K K
IF = argmax {[ [ LI}, [ LI, .., [ LIs} (2)
Jie{1..8} =1 i=1 i=1

Since each node N; has the vectors LI¥ g (where k €
{1,..,K}) after the local inference propagation phase, each
node N; can compute Equation 2 to produce the final in-
ference. In order to assure that Equation 2 is calculated
using the local inference results of the same event, Equation
2 is computed only over the local inference results that are
aligned in time. For each computation of Equation 2 only
the local inference results which differ in time for at most
6 ms are considered. In our implementation, we set § =
150 ms, which we determine experimentally to be the best
value. The larger J, the bigger is the likelihood that the
local inference results refer to different events. The smaller
4, the higher is the likelihood to capture just one event, but
the closer we get to the phones time synchronization error.
Because time stamps are associated with LI vectors (see
Section 2.6.2) it is possible for the phone to determine if an
event is sampled at the same time.

In order to provide a more robust system against false
positives, a windowing approach is adopted where a speaker
is deemed to be speaking only if they are detected for at least
one more time in the past two iterations of Equations 2. This
policy, similar to the windowing policy introduced for the
local inference in Section 2.6.1, provides experimentally the
best tradeoff between classification delay and classification
accuracy.

3. PRIVACY AND TRUST

Security, privacy, and trust raise considerable challenges
in the area of mobile phone sensing. While we do not present
solutions to these challenges, those solutions are critical to

12

the success of the research discussed in this paper. Dar-
win incorporates a number of design decisions that are steps
towards considering these challenges. First, the raw sen-
sor data never leaves the mobile phone nor is it stored on
the phone - we only store models and features computed
from the raw sensor data. However, features and models
themselves are sensitive data that needs to be considered
appropriately and therefore protected. In the case of the
speaker recognition application, the content of a conversa-
tion is never disclosed, nor is any raw audio data ever com-
municated between phones. The data exchanged between
phones consists of classification confidence values and event
models. Next, mobile phone users always have the ability to
opt in or out of Darwin, hence, no model pooling and col-
laborative inference would take place unless the users make
such a determination.

To meet privacy, security, and trust requirements Darwin
phones should: i) run on trusted devices; ii) subscribe to
a trusted system; and iii) run a trusted application that
is either pre-installed on the phone or downloaded from a
trusted third party (e.g., Apple App Store, Nokia Ovi Store,
or Android Market). Any phone-to-phone interaction (e.g.,
pooling and collaborative inference) should be regulated by
off-the-shelf authentication and authorization mechanisms
that prevent the injection of malicious code or intentionally
distorted inference results from adversaries.

4. SYSTEM PERFORMANCE

In what follows, we first discuss the implementation of
Darwin on the Nokia N97 and Apple iPhone and then present
the detailed evaluation results of the Darwin system sup-
porting the speaker recognition application.

4.1 Phone Implementation

Darwin is implemented on the Nokia N97 using C++, Kiss
FFT [4] for fast fourier transform (FFT) calculations, and
QT [7], which is a wrapper around C++ for the graphical
user interface. On the Apple iPhone we use C++ and the
FEFTW fast fourier transform library [3]. The necessary algo-
rithms, i.e., GMM training, the probability density function,
and MFCC extraction are ported to the N97 and iPhone
from existing Matlab code that we verified to work correctly.
We plan to make this toolkit available in the future as an
open source project. The availability of this toolkit on a
phone is a considerable resource for building more powerful
classifiers. The backend server responsible to run the model
training and re-training for evolution is implemented on a
Unix machine using C and standard socket programming for
communications. A UDP multicast client is implemented
to allow local inference results propagation whereas an ad-
hoc lightweight reliable transport protocol has been built to
send feature vectors to the backend for model training, to
send trained models to the phones, and to exchange models
during the pooling phase. Because we target heterogeneous
scenarios, an audio sampling rate of 8KHz is used in order
to run Darwin on the iPhone 3G, which can drive the micro-
phone up to 48KHz sampling, the iPhone 2G and the Nokia
N97, which only support 8KHz audio sampling rate.

4.2 Experimental Results

We evaluate the Darwin system using a mixture of five
N97 and iPhones used by eight people over a period of two
weeks generating several hours of recorded audio containing
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Figure 5: Evolution sessions count over time in the
indoor scenario for speaker 8.

speech portions. In order to evaluate the system against
ground truth data, the audio data is manually labeled by
extracting the voicing chunks of each of the eight speakers.
The audio is recorded in different locations under differing
conditions such as a quiet indoor environment, walking on
a sidewalk along a busy and noisy street, and in a noisy
restaurant. This provides a good basis to validate Darwin
under very different operating conditions. We only present
a subset of the results from our experiment due to space
limitations.

4.2.1 The Need for Classifier Evolution

We conduct a simple experiment to show the need for clas-
sifier evolution on mobile phones. Three people walk along
a sidewalk of a busy road and engage in conversation. The
speaker recognition application without the Darwin compo-
nents runs on each of the phones carried by the people; that
is, no classifier evolution, model pooling, and collaborative
inference algorithms are enabled for the experiment. The
voice classifier for each person is trained in a quiet indoor
environment. We quantify the performance of a classifica-
tion model trained indoors when operating in a noisy out-
door setting. Figure 4 shows the classification accuracy [53]
for mobile phones 1, 2, and 3 for speaker 1, 2, and 3, respec-
tively. It is evident from the plot that the accuracy is quite
low because the maximum speaker classification accuracy for
speaker 1 and 2 is 63% and 61%, respectively, and only 52%
for speaker 3. The poor performance is because the classifi-
cation model trained indoor performs poorly outdoors. This
highlights the challenge presented when sensing in different
environments. Building audio filters capable of separating
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voice from other types of noise is challenging and would not
likely scale given the large pool of possible sounds that may
be encountered by a mobile phone on the street or in any
other environments. This result motivates the need for de-
signing efficient classifier evolution techniques that operate
transparently to the person carrying the phone in order to
evolve classification models according to the scenarios where
people find themselves.

Let us take a look now at the evolution algorithm per-
formance. Figure 5 shows the distribution for the duration
of the experiment of the number of audio chunks recruited
by the classifier evolution algorithm for speaker 8 in the in-
door case. Similar results are observed for other speakers
not shown in the results. As expected, a larger number of
chunks are recruited during the first phase, when the ap-
plication is run after the initial training, than towards the
end, when the model has already been refined and little or
no model evolution is required.

Figure 8 shows the accuracy improvement as the amount
of data sent from the phone to the backend for re-training
grows. This result refers to a different outdoor environment
than the one in Figure 4. This second outdoor scenario is
noisier than the first one, causing the initial accuracy be-
fore evolution to be lower than the one reported in Figure 4.
Clearly, the larger the training set capturing the character-
istics of the new environment the better the performance.
Figure 6 shows the amount of audio data recruited by the
evolution algorithm for the duration of the restaurant ex-
periment. It is interesting to see that after a few minutes
of conversations the models of the three speakers diminish
their training data recruitment and model evolution eventu-
ally stops (as happening for speaker 1 model). This confirms
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door quiet environment with collaborative inference
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the behavior observed for Darwin in the quiet indoor envi-
ronment. The only difference is in the amount of recruited
data between the restaurant and quiet scenario. In fact,
in the former case the amount of data recruited ranges be-
tween 7T8KB and 100KB, whereas in the indoor case it is
between 16KB and 70KB. This is in line with the fact that
less data is needed to evolve an indoor model than a “restau-
rant” model (i.e., a very different environment from a quiet
place) since initial training is performed in a quiet place.
Figure 7 reports the server training algorithm running time
as the training data set grows. The measurement refers to
the outdoor case and levels off when the accuracy (shown
in Figure 8) reaches the maximum. Right before the end
of evolution the server takes about 10 seconds to train the
GMM model using a 1.3MB data set.

4.2.2  Experimental Scenario One: Quiet Indoor En-
vironment

We first show the performance of the speaker recognition
application analyzing data collected from 5 different phones
concurrently running the Darwin system in a meeting set-
ting in an office environment where 8 people are involved
in a conversation. The phones are located at different dis-
tances from people in the meeting, some on the table and
some in people’s pockets. The aim of the experiment is to
study the impact of different phone sensing context showing
how a low classification accuracy due to adverse context is
compensated by Darwin. In Figure 11 we show the classifi-
cation precision [53] for speaker 8 calculated by speaker 8’s
phone using the basic speaker recognition application when
speaker 8 is talking. Figure 11 shows that the precision of
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the basic speaker recognition application is below 50%. This
result indicates that speaker recognition using an individual
mobile phone is challenging. The reason is that the phone
could have poor sensing context for example in the pocket
(as for part of the conversation of speaker 8) or affected by
other factors such as noise mixed with voice.

Figure 10 shows the benefit of applying the 50% thresh-
olding technique and windowing policy (described in Sec-
tion 2.6) to the basic speaker recognition classification al-
gorithm. The 50% thresholding technique makes sure that
there is a 50% difference between the confidence of the in-
ferred speaker and every other speaker, whereas the win-
dowing policy reduces the effect of false positives. Figure
10 shows the difference between the true positive and false
positives counts normalized by the true positive count for
speaker 8 speaking. The closer the normalized difference
to 1, the larger is the number of true positives versus the
number of false positives. Figure 10 shows the combined
positive effect of the 50% thresholding and windowing tech-
niques, which makes the normalized difference larger com-
pared to the basic technique. This is a first step toward the
final inference, which is part of the collaborative inference
phase of Darwin; however, it is not enough to achieve higher
classification accuracy. In fact, when the Darwin system is
activated a further performance boost is registered. Figure
9 shows results for the mean recall [53], precision, and accu-
racy results for the eight speakers classification when Darwin
is running. It is evident from the plot that Darwin boosts



Classification Difference

0 10 20 30 40 50 60 70 80 90
Time (seconds)

Figure 13:
speaker 8 and the other speakers with Darwin.

Diff 1
Diff 2
Diff 3
Diff 4
Diff 5
Diff 6
Diff 7

0.4

Classification Difference
e O B O ¥ X +

0.2 |

0 i L L L L L L L L
0 10 20 30 40 50 60 70 80 90
Time (seconds)

Classification difference between

Figure 12: Classification difference between
speaker 8 and the other speakers without Dar-
win.
1 Speaker 1 + 1
Speaker2  x
Speaker 3 *
o8 Speaker4 = 08
Speaker5 =
S 06 Speaker6 o S 06
@ Speaker7 o @
S Speaker8 2 3
a 04 a
0.2

Speaker 1 + Speaker 1 +
Speaker2  x Speaker2  x
Speaker 3 * 0.8 Speaker 3 *
Speaker4 = Speaker4 o
Speaker5 = Speaker5 =
Speaker6 o 0.6 Speaker6 o
Speaker 7 . Speaker 7 .

a a

Speaker 8

Precision

Speaker 8

[l R i e 0 k=
0 50 100 150 200 250 300 350 400 0

Time (seconds)
(a) Precision for speaker 4 calcu-
lated by the speaker’s mobile phone
without collaborative inference.

"50 100 150 200 250 300 350 400
Time (seconds)

(b) Precision for speaker 4 calcu-
lated by mobile phone 1 without
collaborative inference.

400
Time (seconds)

(c) Precision for speaker 4 calcu-

lated by mobile phone 2 without
collaborative inference.
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inference.

the classification performance of the speakers identification.
The boost is due to collaborative inference, which leverages
the other co-located mobile phones in order to achieve better
classification accuracy.

The other interesting result from Figure 9 is the positive
impact of Darwin’s classifier evolution. The accuracy, pre-
cision, and recall increase over time at the beginning of the
experiment as new audio is recruited and the classification
models re-trained taking into account the new audio. The
performance for accuracy, precision, and recall levels off at
the point where the classifier evolution algorithms does not
benefit from more data, as discussed in Section 2.4.

The benefit of model evolution, model pooling, and col-
laborative inference can be also seen in the results shown in
Figures 12 and 13. If we indicate with TP and FP, respec-
tively, the true and false positives when speaker 8 is speak-
ing, the y-axis of the plots reports the quantity (TP-FP)/TP
over time. A FP count is maintained for each speaker, thus
in Figures 12 and 13 eight curves are shown. In one case
Darwin is disabled (Figure 12), in the other case Darwin
is enabled (Figure 13). When (TP-FP)/TP is close to 1 it
means that the number of true positives dominates the num-
ber of false positives. In contrast, if (TP-FP)/TP is close to
0 we have that the number of false positives approximates
the number of true positives. We can see that the difference
between speaker 8’s true positives and any other speakers’
false positives is larger when Darwin in running (as shown
in Figure 13) than when it is not (see Figure 12). This is
another indication of how Darwin improves the classification
result for a given speaker.
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4.2.3 Experimental Scenario Two: Noisy Indoor
Restaurant

In the next experimental scenario, we evaluate Darwin
when the speaker recognition application is running on five
phones while five people are having a meal in a noisy restau-
rant. This contrasts the first scenario of a quiet indoor set-
ting. Three out of five people are engaged in conversation.
Two of the five phones are placed on the table, the other
phones are in the pants pockets for the entire duration of
the experiment. In Figure 14, we show the classification pre-
cision of speaker 4 from three of the mobile phones located
around the table people are sitting at; note, we observe simi-
lar trends for the other phones. Figure 14(a) is the precision
computed by speaker 4’s phone, which is the closest phone
to speaker 4 (it is carried by speaker 4) for when speaker 4 is
talking. The reason we select speaker 4 for the evaluation is
that speaker 4 is the closest person to a nearby table where
another group of people is having a loud conversation. Here
we show the benefit of the Darwin system for the phone of
a speaker who is positioned in a non optimal context, i.e.,
close to a noise source.

Figures 14(b) and 14(c) refer to the precision calculated
by two other phones, which we call phone 1 and 2, located
at the opposite side of the table where speaker 4 is sitting.
Figures 14(b) and 14(c) show on average higher classifica-
tion precision on phones 1 and 2 when speaker 4 is talk-
ing than when the classification is performed by speaker 4’s
phone reported in Figure 14(a). This is because phones 1
and 2 are more distant from the source of noise and con-
sequently they are able to capture higher quality speaker
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Figure 15: Recall, precision, and accuracy in a noisy restaurant with Darwin for three speakers.

4’s voice audio than speaker 4’s phone itself. The important
point is that Darwin boosts the classification performance of
speaker 4 by leveraging other surrounding phones experienc-
ing better sensing contexts; this is shown in Figures 15(a),
15(b), and 15(c) which report, respectively, the recall, pre-
cision, and accuracy of the three speakers in the restaurant
experiment, including speaker 4, over time. From Figure
15(c) it can be seen that speaker 4’s accuracy is low (~65
%) at the beginning of the experiment but starts increas-
ing as the experiment proceeds. The classifier evolves and
the surrounding mobile phones participate in collaborative
inference. At the end of the experiment, speaker 4’s classi-
fication accuracy reaches ~80%. The fact that speaker 4’s
recall and precision present low values for the duration of the
experiment (as shown in Figures 15(a), 15(b), respectively)
confirms that speaker 4 voice is impacted most of the time
by loud conversation from the next-table.

4.2.4 Experimental Scenario Three: Walking Out-
doors Along a Sidewalk in a Town

The final scenario we study is an outdoor environment
where five people walk along a sidewalk and three of them
are talking. This contrasts the first two scenarios. In this
experiment, five people carry phones either clipped to their
belt or inside their pockets. As in the restaurant scenario,
the amount of audio data recruited by Darwin to evolve the
classifier is larger than the indoor evolution case and ranges
between 90KB and 110KB of data. The performance boost
using the Darwin system can be observed in Figure 16 where
the speaker recognition classification accuracy increases to
80-90%. The greatest improvement is observed by speaker
1 whose phone is clipped to their belt. This mobile phone
is exposed to environmental conditions such as wind and
passing cars making the audio data noisy and voice hard to
pick up. However, we note that some of the other phones
experience better sensing context and by relying on these
phones Darwin boosts the final classification accuracy for
speaker 1.

4.3 Impact of the Number of Mobile Phones

In this experiment, we study how the Darwin system’s
performance changes as the number of mobile phone partic-
ipating in model pooling and collaborative inference varies.
This experiment is also conducted in the same noisy restau-
rant discussed in scenario two, which represents a challeng-
ing sensing environment. The experiment consists of three
people speaking and five phones carried by five people posi-
tioned around the table. Some phones are placed on the ta-
ble and others remain in speaker’s pockets. The experimen-
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tal scenario starts with only two of the five phones running
the Darwin system. More nodes are subsequently added up
to a maximum of five — all phones run the Darwin system
and are randomly positioned around the table. The classifi-
cation accuracy for each of the three speakers as a function
of the number of phones running Darwin is shown in Fig-
ure 17. As expected, the larger the number of co-located
mobile phones running Darwin, the better the inference ac-
curacy. The performance gain using collaborative inference
grows with the number of phones according to the algorithm
discussed in Section 2.6 and in particular to Equation 2.
While two phones do not have sufficient “spatial” diversity
to experience gain from the Darwin system, the classifica-
tion accuracy is boosted when the three remaining phones
are added.

Speaker 3 experiences low accuracy due to the proximity
of their phone to another group of people involved in a loud
conversation. This is perceived as noise by the speaker iden-
tification classifier and negatively impacts speaker 3’s voice
classification more than speaker 1 and 2. Speaker 2 experi-
ences low accuracy with three phones running Darwin due
to speaker 2’s voice characteristics. Speaker 2’s classification
model poorly classifies speaker 2’s voice when operating indi-
vidually. This could be due to the fact that the initial train-
ing audio is not recorded correctly or that the 20-component
19-dimensional GMM for speaker 2 does not properly model
speaker 2’s voice. In this case, a larger number of nodes
is needed to perform accurate speaker 2 classification. The
Darwin system compensates not only errors due to different
sensing context but also for poor event classification model-
ing. This is possible because multiple phones co-operate to
generate more accurate inference results. The confirmation
that speaker 2’s model is not accurate comes from the fact
that speaker 2’s recognition with 3 phones performs poorly
in comparison with speaker 1 and 3 in a quiet setting (see
Figure 18), which is where the classifier should perform the
best given the initial indoor training stage.

We also determine that the reason for better inference
accuracy with 3 phones in the restaurant experiment for
speaker 3 is that the other two phones are closer to speaker
3 than they are in the quiet indoor case. This offers better
audio signal quality for the collaborative inference step.

In summary, the Darwin system boosts the classification
accuracy when the sensing environment or context adversely
impacts quality of inference, when the individual classifica-
tion model yields poor accuracy given a person’s voice char-
acteristics (as in the case of speaker 2 for our experiments),
and when sensors or microphones have different hardware
characteristics [39].
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4.4 Time and Energy Measurements

When proposing a complex but powerful classification ar-
chitecture such as Darwin the natural question is: how does

this system impact the performance of everyday mobile phones?

While we have completed a first implementation of Darwin
on the Nokia N97 and Apple iPhone we recognize that there
are challenges and future work to be done. In what follows,
we present some time and energy measurements for Darwin
running on the N97 (similar performance is observed for the
iPhone). We believe that smart duty cycling is also a future
part of our work which would improve the energy results pre-
sented in this section. Averaged baseline measurement are
taken before each measurement in order to have a baseline
reading, which we subtract from each measurement. The
measurements are performed using the Nokia Energy Pro-
filer tool [5] and repeated five times. The mean values are
reported. The running time of each Darwin component for
1 second of audio sampling is reported in Table 1. The
most computationally intensive routines are the local infer-
ence (which involves the probability density function calcu-
lation for eight speakers) and receiving the model from the
server. Figure 19 shows the power, CPU load, and memory
measurements on the N97 when running the Darwin com-
ponents. It can be seen that the local inference step takes
the largest amount of power (see Figure 19(a)) and CPU
load (see Figure 19(b)). Substantial memory usage is mea-
sured for MFCC extraction compared to the other compo-
nents (see segment (C) of Figure 19(c)). This suggests that
the MFCC extractor implementation requires optimization.
Receiving a new model from the server and broadcasting it
to neighbors during pooling also causes more power drain
than the other routines. However, evolution and pooling are
operations that occur rarely (i.e., evolution only once for a
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and accuracy for three speakers walking on a sidewalk along a busy road.

Table 1: Average running time for processing 1 sec
audio clip, sending, and transmitting data.

Routine Running Time (s)

Silence suppression 0.003
Voicing 0.565

MFCC extraction 1.4
Local inference 3.67
TX MFCC to server 0.862
RX model from server 4.7
TX model to neighbors 1.91
TX local inference 0.127
RX local inference 0.09

certain environment and pooling only once to send a model
to neighbors), consequently, pooling and evolution do not
heavily account for resource usage and power consumption.
Routines that instead occur periodically, such as audio sam-
pling, voicing, MFCC extraction, etc., require less power
each time they are active.

Finally, Figure 20 shows the measured battery lifetime
and the inference responsiveness (defined as the inverse of
inference delay) as a function of the audio sampling inter-
val and collecting 1 second of audio each time the micro-
phone is polled. We obtain the shortest battery lifetime
(~27 hours) for a periodic sampling interval of 10 seconds
(this sampling interval guarantees the highest inference re-
sponsiveness). However, if smart duty-cycling techniques
are adopted [48], the phone could operate in a low sensing
duty-cycle mode, e.g., with a sampling rate of 60 seconds,
when Darwin is not running. As an event is detected, such
as voice in case of speaker recognition, Darwin could become
active in a high duty-cycle mode, e.g., using a 10 second sen-
sor polling rate, for the duration of the event. As the event
disappears the phone could go back to low duty-cycle mode
and Darwin would stop working. This would guarantee high
application responsiveness while maintaining several hours
of battery duration. More detailed analysis of resource con-
sumption and the development of low-energy duty cycling
for Darwin are important future work. We believe however
that new duty cycling techniques discussed in the literature
for mobile phones [48, 32] could boost the phone’s battery
lifetime of Darwin phones.

5. DEMO APPLICATIONS

Darwin can be used by other emerging mobile phone sens-
ing applications in addition to the speaker recognition appli-
cation discussed in this paper. In what follows, we discuss
how a number of demo applications that use different sensing
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Bill and Lindsay are in a
conversation in the
kitchen

Figure 21: Virtual Square, an augmented reality ap-
plication on the N97 with the support of Darwin.

modalities can be supported by Darwin. We discuss three
different demo applications.

5.1 Virtual Square Application

Darwin could support applications in the social sphere
setting, where speaker identification, for example, could be
used to augment the context of a person and their bud-
dies and make the buddy proximity detection more accurate.
Similarly, it could be used for reliable detection of meetings.
A pure Bluetooth or WiFi based proximity detection system
might not work accurately considering the large amount of
devices a Bluetooth or WiFi scan could potentially return
in the area where the person is. We have developed Virtual
Square, an application that exploits augmented reality to
present a person’s sensing status information [29] including
whom the person is in proximity/chatting with at a cer-
tain moment and location. Our Virtual Square prototype is
built for the Nokia N97 writing a combination of QT code,
for the body of the program, and Symbian routines to access
low level functionalities for the collection of magnetometer
readings from the onboard magnetometer. GPS and mag-
netometer sensors are used to geo-tag the person’s sensor
context which is stored on a server and is retrievable by
the buddies who subscribe to the service. Users have full
control of the application privacy settings and can opt-out
from disclosing who they are chatting with at any time. A
screenshot of the application is reported in Figure 21. It is
clear how Virtual Square, by simply pointing the phone as
when taking a picture and moving it around, is a powerful
means to see “through walls” and gather information about
people and places in the very intuitive way of an augmented
reality interface. The old concept of square as a place where
people gather to chat and meet now becomes virtual, being
enabled by the smartphones sensors which allow to charac-
terize people’s microcosmos.

5.2 Place Discovery Application

Darwin could support applications using different sensing
modalities; for example, place discovery applications based
on radio frequency (RF) activity from WiFi access points
[22]. Darwin can be integrated with such an application in
the following way:

- Initial training and evolution: the classification model
in this case is the RF signature profile that characterizes a
certain place. The dynamics of the radio characteristics and
the fact that access points are being added or removed in
certain areas make the RF profile time varying. An RF
profile could be initially built by a mobile phone and then



evolved as the mobile phone visits the same place multiple
times in the future.

- Pooling: when a mobile phone visits an area for which
it does not have an RF profile it has two options: either
build a profile, which requires time and introduces delay in
inference, or, pool a profile for the area from a nearby mobile
phone or backend server. Building an RF profile could take
more time than the duration of the stay in the area, which
means that the place might not be discovered. By pooling,
the profile is immediately ready to be used in the inference
phase.

- Collaborative inference: if multiple mobile phones
are co-located in the area they can co-operate to perform
a more accurate place inference. Given that sensed RF ac-
tivity could be slightly different from phone to phone, col-
laborative inference could be used to determine what is the
most likely discovered place by, for example, selecting the
place that is reported with highest probability by each of
the mobile phones.

5.3 Friend Tagging Application

The idea of this application is to exploit face recognition
to tag friends on pictures. Namely, the application auto-
matically associates a name to a person in the picture if the
person is recognized. Darwin could improve the application
in the following manner:

- Initial training and evolution: the initial training
starts on each user’s mobile phone. The mobile phone de-
rives a model for the person’s face through a training pic-
ture. Following this initial training seed, the face model for
a person can evolve over time. For example, a person’s face
is often captured by the phone’s camera (e.g., when using
video conferencing) allowing the model to be refined under
different conditions (varying light conditions, on the move,
etc).

- Pooling: when friends get together their phones pool
each other’s face models. Person A’s phone does not have
to derive a face model for person B. It pools it directly from
person B’s phone.

- Collaborative inference: face detection can now be
run in parallel to tag friends when taking group pictures.
Imagine a group of co-located friends taking pictures of each
other. Each picture could have different people and the
lighting and angle of each shot could vary considerably. Co-
located phones individually run their face classification al-
gorithm and then exchange information to refine the final
inference; for example, tagging the people that the local in-
ferences returned with highest confidence.

6. RELATED WORK

Work on applications and systems for sensing enabled mo-
bile phones is growing in importance [31, 9, 35, 8, 19, 21, 13,
27, 10, 30, 29]. Most of the work in the literature, however,
propose local sensing operations running on individual de-
vices and do not exploit in-field mobile phones interactions.
An exception to this is the work in [19], which considers con-
text driven sampling and calibration techniques for mobile
sensor networks.

Sensor node co-operation is studied mainly in the context
of static sensor networks where fusion [24, 38, 49] and ag-
gregation [52, 45, 33] techniques are applied. The benefit
of sensor nodes cooperation in the context of object track-
ing using distributed Kalman Filters is discussed in [36, 37].
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In [24] the authors propose distributed energy efficient role
assignment and [38] discusses signal processing techniques
to reduce the amount of sensor data needed to detect an
event, while [49] proposes the adoption of distributed aver-
age consensus in order to compensate sensing errors. In the
CASA project [2] researchers adopt techniques for collabo-
rative and adaptive sensing of the atmosphere using radar
technologies. All these projects present techniques for static
and not mobile sensor networks. To the best of our knowl-
edge, there is little or no work addressing the issue of how
to leverage context-sensitive mobile sensing devices such as
mobile phones as proposed by Darwin. There is work on the
context of using embedded sensors such as the Intel MSP
[14] to infer people’s activity. However, no interactions be-
tween these devices are taken into account in order to realize
co-operative strategies such as those discussed in this paper.

Recently, techniques that leverage heterogeneous sensing
devices in order to exploit external sensing modalities as a
further input for classification algorithms or boosting appli-
cation fidelity in mobile sensing scenarios are proposed in
[25, 15]. Our work goes beyond the idea of borrowing sensor
readings from other sensors since we propose collaborative
inference techniques that combine with classifier evolution
and model pooling.

Semi-supervised machine learning techniques are investi-
gated for word sense disambiguation [50], to identify subjec-
tive nouns [41], or to classify emotional and non emotional
dialogues [28]. However, no work studies semi-supervised
learning techniques in the context of mobile sensing appli-
cations or frameworks.

Audio analysis for speaker identification is a well explored
area in the literature [17, 42, 16, 44, 43, 26, 18, 40, 23].
Although we do not propose new speaker recognition tech-
niques, we show how to build a lightweight speaker identifi-
cation application capable of running on mobile phones.

7. CONCLUSION

In this paper we presented the design, implementation,
and evaluation of the Darwin system that combines classifier
evolution, model pooling, and collaborative inference for mo-
bile sensing applications on phones. The classifier evolution
method presented in this paper is an automated approach
to updating models over time such that the classifiers are
robust to the variability in sensing conditions and settings
common to mobile phones. Mobile phones exchange classifi-
cation models whenever the model is available from another
phone, thus, allowing mobile phones to quickly expand their
classification capabilities. Collaborative inference combines
the classification results from multiple phones to achieve
better inference accuracy and confidence. We implemented
Darwin on the Nokia N97 and Apple iPhone in support of
a proof-of-concept speaker recognition application. We also
showed the integration of Darwin with some demo appli-
cations. Our results indicate that the performance boost
offered by Darwin is capable of off-setting problems with
sensing context and conditions and presents a framework
for scaling classification on mobile devices. Future work
will consider duty cycling techniques for better energy con-
servation and studying simplified classification techniques,
for example, building more computationally light GMMs for
mobile phones without impacting performance. We believe
the development of such a classification toolkit for mobile



phones will enable new research on phones for human cen-
tered applications.
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